Happy New Year School Christmas Art #### **New Owners** As a lot of you already know, we have sold our property. We are sad to leave this piece of paradise we have called home for so long, but we know it's time. There are a lot of people we will miss! We will be back for visits with our friends and rellies. At this time, we would like to introduce you to the new owners! They are Keith and Sara, along with their two fur-babies, Chunk and Koda. They bring with them an abundance of energy and excitement at the prospect of living off-the-grid. We feel they will not only revive our property and love it as we did, but they will fit well into the community! Keith is a ticketed carpenter. Sara has 10 years as a care aide and is currently working as a residential cleaner in a resort. We know you will all welcome them when they arrive in the New Year! Pat and Derek #### Welcome Sofia, Julian, Rose-Marie and Sasha!! It is our great pleasure to Welcome this lovely little family to live here on Read Island and be a part of our growing Surge Narrows Community!! Julian and Sofia and their soon to be 2-year-old twins, Rose-Marie and Sasha have travelled from the Eastern Townships of Quebec in hopes of finding a place to call home. They are very excited to have found Read Island to build their nest and contribute their skills and energy to our vision of becoming a more cooperative and food sustainable community. (Julian's older son Solay lives with his mother in Quebec.) They are currently hunkering down for the winter at the Moss family homestead; warm and cozy and adapting to the lifestyle. They would like to express their gratitude to all who helped make their transition a smooth one and look forward to meeting everybody in due time. We know this community will welcome them warmly and wish them all the best!! Rock and Sheila #### SNCA BOARD UPDATE We hope you all had a cozy holiday and that you found ways to connect and celebrate with friends and family. Here's a short update on what we have been up to in the last month: - The Committee reviewing SNCA's constitutional "purpose" drafted a new statement which aims to better outline SNCA's current purpose. This draft will be sent out for community review and input in the coming months before going to a vote at the next AMG in the fall. - We met with the Surge School Principal and the Superintendent who were both very supportive of moving community projects forward. The projects they were excited about were the outdoor education room/pavilion and the "greening" of the school. The latter project involves moving the school to propane heat and therefore requiring much less generator running time. We had already been talking about installing propane heat in the Gym to enable it's use in the colder months, and it appears that we could piggy back on the schools plans. Please let Sheila know if you are interested in getting involved or knowing more about these projects. - We are still transitioning to Board life without Ginny, navigating through the tasks she made look so easy(!) - Update re: Hoskyn Dock Jacob Blanchard of SRD and Seaway Diving are going to fix the mooring chains at the Hoskyn dock which dragged in the recent SE storm. They also discovered 2 nearly rusted out chain links. Looking ahead to 2021 we plan on continuing to support community projects and initiatives and fulfilling our grant obligations. Early in the new year we will be developing our Financial Plan and if there are funds to spare, we will be seeking input as to what projects our members would like to see move forward. We hope that 2021 brings our community even closer together and that we may find ways to gather and celebrate again. Happy New Year! SNCA Board, Sheila (fashedo@hotmail.com), Rosie, Jim, Steve, Dood ### **Current Events and Notices** #### **Medical Clinic January** Dr. Steve will be attending the clinic on January 13th. **Anyone need hearing aid batteries?** I changed hearing aid's and have 8 packages of type +13 batteries. Please contact me at ksb.svb@gmail.com if you can use them. KB "Happy Holidays to everyone in the Surge Community! To help make up for missing out on our annual Christmas Concert, the kids and I drew, coloured, printed and distributed Christmas cards to as many community members as we could think of. I thought you might be curious as to who drew and coloured the cards you got, as well as what some of the other amazing designs looked like, so here is a peek at ALL the lovely cards the kids created this year, with their names by each one. If we missed sending a physical card to you, we're sorry and we hope you enjoy this digital version! でいいいいいいいいいいいいいいいい Enjoy, and all the best for 2021 to you all! The Surge Kids and Zephyr PS. Though she is not a Surge School student, my 5-year-old niece Nora (Sitka's daughter) was excited to help create designs for this project as well, so you'll notice some of her artwork has snuck into the mix." Good Tidings! Here Comes Santa Jaws! Drawn by Arwen Drawn by Nora Drawn by Jasmine Moray Christmass Drawn by Juniper Moray Christmas! Coloured by Dylan (Drawn by Zephyr) Coloured by Samual (Drawn by Juniper) Drawn by Juniper Coloured by Dylan (Drawn by Zephyr) Coloured by Julia (Drawn by Juniper) Drawn by Juniper Drawn by Juniper Coloured by Dylan (Drawn by Zephyr) Drawn by Salix Coloured by Salix (Drawn by Zephyr) Drawn by Salix Coloured by Salix (Drawn by Zephyr) ## **Surge Narrows School** Cards for the Community **Merry Christmas 2020!** Drawn by Salix Coloured by Salix (Drawn by Zephyr) Drawn by Juniper Drawn by Jasmine Drawn by Juniper #### **SNFAC Update** Firstly, we want to say a big THANK YOU to everybody who took the time to send a letter regarding the WLP for 0046. Len Apedaile received over 40 responses. One of the letters was also sent and acknowledged by the new Minister of Forestry. After last month's big push to respond to WLP 0046 everybody felt like a bit of a break, however, on Sunday, Dec.20th a small group of volunteers met up to walk 4 proposed cut blocks on Maple Hill. The group split up and each team walked a different block observing tree species, sizes etc. These four cut blocks are in WL 0046 and David Graham plans to start cutting there as soon as the WLP is approved. On Tuesday, Dec.23rd, four of us met with Len Apedaile (D. Graham's forester) at the same cut blocks for an approximately three hour discussion. A large part of this area is within the PLN (protected landscape network) which Eve Flager has been mapping with the help of Herb Hammond. at at This is a link that reports on a new study about which trees capture and store the most carbon https://www.eurekalert.org/pub_releases/2020-11/f-tb110220.php This is the website which takes you to the big tree registry. It explains which trees are candidates and shows photos of trees that have already been registered. https://bigtrees.forestry.ubc.ca/ Watch this for a different take on B.C's forest industry https://www.facebook.com/watch/?v=318608566066128 Maya #### https://www.timeanddate.com/sun/@5909050?month=12&year=2020 Very cool website. Check out the "sun calculator" under the tab Sun & Moon. https://www.hakai.org/what-a-massive-landslide-in-coastal-british-columbia-means-for-salmon-and-their-habitat/ (Locally, we became aware of the event when tremendous amounts of debris floated into our area. We did not know the source until several weeks later. KB) # Fish farms on key B.C. salmon migration route to be phased out by 2022 https://globalnews.ca/news/7530159/fish-farms- https://globalnews.ca/news/7530159/fish-farms-on-key-b-c-salmon-migration-route-to-be-phased-out-by-2022/ By Amy Smart · The Canadian Press Posted December 17, 2020 8:12 pm · Updated December 18, 2020 9:46 pm #### **Nature's Solution to Climate Change** A strategy to protect whales can limit greenhouse gases and global warming Ralph Chami, Thomas Cosimano, Connel Fullenkamp, and Sena Oztosun When it comes to saving the planet, one whale is worth thousands of trees. PODCAST: THE VALUE OF WHALES AND EVERY OTHER BREATH PDF VERSION Scientific research now indicates more clearly than ever that our carbon footprint—the release of carbon dioxide (CO₂) into the atmosphere where it contributes to global warming through the so-called greenhouse effect—now threatens our ecosystems and our way of life. But efforts to mitigate climate change face two significant challenges. The first is to find effective ways to reduce the amount of CO₂ in the atmosphere or its impact on average global temperature. The second is to raise sufficient funds to put these technologies into practice. Many proposed solutions to global warming, such as capturing carbon directly from the air and burying it deep in the earth, are complex, untested, and expensive. What if there were a low-tech solution to this problem that not only is effective and economical, but also has a successful funding model? An example of such an opportunity comes from a surprisingly simple and essentially "no-tech" strategy to capture more carbon from the atmosphere: increase global whale populations. Marine biologists have recently discovered that whales—especially the great whales—play a significant role in capturing carbon from the atmosphere (Roman and others 2014). And international organizations have implemented programs such as Reducing Emissions from Degradation and Deforestation (REDD) that fund the preservation of carbon-capturing ecosystems. To read the whole article click on the PDF link above. ### January 2021 Beazley Hole in the Wall | Turns | Maxin | num | renverse maximum | | | | | |--------------------------------------|----------------------------|-------------------------------|------------------|------------------------------|------------------------------|-------------------------------|--| | Day Tim | _ | | | jour heure | | heure noeuds | | | 1
FR 122
VE 174 | 4 1501
6 2045 | +10.0
-7.4
+5.4
-7.0 | 16
SA
SA | 0638
1302
1836 | 0311
0952
1543
2132 | +9.6
-7.8
+6.3
-6.7 | | | 235
2 064
SA 130
SA 183 | 0303 4
1 0951
6 1545 | +10.2
-7.4
+5.7
-6.8 | 17
SU
DI | 0031
0717
1346
1928 | 0352
1032
1625
2217 | +8.9
-7.4
+6.3
-6.0 | | | 3 003
072
SU 135
DI 192 | 2 1031
1 1635 | +10.1
-7.6
+6.0
-6.4 | 18
MO
LU | 0115
0756
1432
2025 | 0435
1114
1721
2322 | +7.9
-7.1
+6.3
-5.3 | | | 4 012
080
MO 144
LU 202 | 5 1116
0 1729 | +9.6
-7.7
+6.4
-6.0 | 19
TU
MA | 0202
0836
1520
2134 | 0529
1158
1815 | +6.7
-6.7
+6.3 | | | 5 021
085
TU 153
MA 213 | 2 1205
2 1828 | +8.6
-7.7
+7.0 | 20
WE
ME | 0259
0916
1610
2251 | 0023
0615
1240
1910 | -4.7
+5.4
-6.2
+6.3 | | | 6
WE 094
ME 162
225 | 2 1258
5 1930 | -5.7
+7.4
-7.6
+7.6 | TH
JE | 0413
1001
1659 | 0124
0719
1338
2018 | -4.2
+4.2
-5.8
+6.4 | | | 7
TH 103
JE 172 | 5 1354 | -5.6
+6.1
-7.4
+8.1 | FR
VE | 0005
0549
1052
1749 | 0240
0833
1441
2120 | -4.2
+3.5
-5.6
+6.7 | | | 8 000
055
FR 113
VE 181 | 1 0839
1 1453 | -5.7
+5.2
-7.2
+8.7 | SA
SA | 0107
0714
1149
1838 | 0354
0933
1529
2208 | -4.5
+3.2
-5.6
+7.2 | | | 9 011
070
SA 122
SA 190 | 9 0942
9 1551 | -6.1
+4.7
-7.1
+9.2 | SU
DI | 0159
0816
1249
1925 | 0456
1028
1622
2302 | -5.2
+3.5
-5.9
+7.8 | | | 10 021
081
SU 132
DI 200 | 8 1045
8 1648 | -6.8
+4.6
-7.0
+9.6 | 25
MO
LU | 0244
0902
1346
2010 | 0541
1117
1717
2348 | -5.9
+4.0
-6.3
+8.4 | | | 11 030
091
MO 142
LU 205 | 6 1147
6 1741 | -7.5
+4.8
-7.1 | 26
TU
MA | 0324
0940
1437
2053 | 0630
1202
1757 | -6.6
+4.5
-6.7 | | | 12
TU 100
MA 152
214 | 6 1238
0 1830 | +9.9
-8.0
+5.1
-7.3 | 27
WE
ME | 0359
1013
1524
2134 | 0027
0709
1242
1829 | +8.9
-7.0
+5.1
-7.1 | | | 13
WE 105
ME 161
222 | 5 0752
1 1325
1 1916 | +10.0
-8.3
+5.5
-7.4 | TH
JE | 0433
1047
1609
2215 | 0101
0744
1324
1914 | +9.3
-7.4
+5.7
-7.4 | | | 14
051
TH 113
JE 165
230 | 7 0833
5 1411
9 2001 | +10.0
-8.3
+5.9
-7.4 | FR
VE | 0507
1121
1653
2255 | 0135
0817
1402
1954 | +9.9
-7.5
+6.3
-7.7 | | | 15
FR 121
VE 174
234 | 8 0913
8 1456
7 2045 | +10.0
-8.1
+6.1
-7.2 | SA
SA | 0541
1158
1738
2337 | 0210
0850
1442
2035 | +10.4
-7.6
+6.9
-7.9 | | | | | | SU
DI | 0617
1237
1824 | 0247
0924
1524
2120 | +10.7
-8.0
+7.5
-7.8 | | | Turns
Day Time | | Maximum
Time Knots | | renverse
jour heure | | maximum
heure noeuds | | |-------------------|------------------------------|------------------------------|-------------------------------|------------------------|------------------------------|------------------------------|-------------------------------| | 1 | | 0231 | +10.3 | jour
16 | | 0316 | +10.0 | | FR
VE | 0608
1235
1754 | 0918
1509
2051 | -7.2
+5.5
-7.2 | SA
SA | 0645
1314
1842 | 0958
1550
2137 | -7.5
+6.4
-6.9 | | SA
SA | 0000
0647
1318
1842 | 0309
0954
1553
2136 | +10.6
-7.5
+5.8
-7.0 | 17
SU
DI | 0040
0724
1359
1934 | 0358
1039
1639
2228 | +9.2
-7.3
+6.4
-6.1 | | SU
DI | 0044
0728
1404
1936 | 0352
1035
1643
2228 | +10.5
-7.8
+6.2
-6.7 | 18
MO
LU | 0125
0803
1446
2032 | 0442
1121
1731
2328 | +8.0
-7.1
+6.3
-5.4 | | 4
MO
LU | 0133
0812
1453
2036 | 0440
1120
1737
2329 | +9.9
-8.0
+6.6
-6.2 | 19
TU
MA | 0213
0842
1534
2140 | 0534
1206
1826 | +6.7
-6.7
+6.2 | | TU
MA | 0228
0858
1545
2143 | 0534
1210
1836 | +8.8
-8.0
+7.2 | WE
ME | 0311
0922
1624
2256 | 0032
0625
1255
1925 | -4.8
+5.3
-6.3
+6.2 | | 6
WE
ME | 0332
0948
1639
2256 | 0037
0633
1303
1937 | -5.8
+7.5
-7.9
+7.8 | 21
TH
JE | 0428
1007
1714 | 0135
0730
1346
2027 | -4.4
+4.1
-5.9
+6.3 | | 7
TH
JE | 0445
1040
1733 | 0147
0739
1400
2040 | -5.7
+6.3
-7.7
+8.3 | FR
VE | 0009
0605
1057
1803 | 0251
0846
1448
2127 | -4.4
+3.4
-5.8
+6.6 | | 8
FR
VE | 0008
0605
1136
1828 | 0303
0849
1458
2142 | -5.9
+5.3
-7.5
+8.8 | SA
SA | 0112
0731
1154
1851 | 0404
0946
1538
2218 | -4.8
+3.1
-5.9
+7.1 | | SA
SA | 0115
0723
1234
1921 | 0427
0948
1556
2242 | -6.2
+4.8
-7.4
+9.2 | SU
DI | 0204
0832
1253
1937 | 0506
1040
1638
2311 | -5.4
+3.4
-6.1
+7.8 | | 10
SU
DI | 0215
0831
1332
2013 | 0525
1058
1652
2336 | -6.7
+4.7
-7.3
+9.6 | MO
LU | 0249
0917
1351
2021 | 0556
1127
1723
2353 | -6.0
+3.9
-6.5
+8.4 | | 11
MO
LU | 0308
0929
1430
2102 | 0623
1154
1745 | -7.3
+4.9
-7.4 | 26
TU
MA | 0329
0953
1443
2103 | 0640
1210
1759 | -6.5
+4.5
-6.8 | | TU
MA | 0356
1018
1525
2149 | 0026
0714
1244
1834 | +9.9
-7.7
+5.3
-7.6 | WE
ME | 0405
1026
1531
2144 | 0030
0717
1246
1842 | +8.9
-6.9
+5.1
-7.2 | | WE
ME | 0441
1104
1616
2234 | 0111
0758
1331
1920 | +10.2
-7.9
+5.7
-7.7 | TH
JE | 0439
1059
1616
2225 | 0106
0751
1332
1921 | +9.5
-7.1
+5.7
-7.5 | | 14
TH
JE | 0523
1147
1705
2316 | 0154
0839
1417
2004 | +10.4
-7.9
+6.1
-7.7 | FR
VE | 0513
1133
1701
2305 | 0141
0823
1409
1959 | +10.2
-7.1
+6.4
-7.8 | | FR
VE | 0604
1230
1753
2358 | 0235
0919
1503
2049 | +10.3
-7.7
+6.3
-7.4 | SA
SA | 0547
1209
1745
2347 | 0216
0854
1448
2040 | +10.8
-7.6
+7.1
-8.0 | | | | | | SU
DI | 0623
1248
1832 | 0253
0927
1530
2125 | +11.1
-8.2
+7.7
-7.9 | | _ | | | - | - | | | _ | |----------------|------------------------------|--------------------------|-----------------------------|----------------|------------------------------|--------------------------|-----------------------------| | Day | Time | Metres | Feet | jour | heure | mètres | pieds | | FR
VE | 0732
1215
1653 | 4.2
3.6
3.8 | 13.8
11.8
12.5 | SA
SA | 0045
0750
1508
1817 | 0.8
4.3
3.1
3.5 | 2.6
14.1
10.2
11.5 | | SA
SA | 0028
0810
1336
1747 | 0.7
4.2
3.4
3.7 | 2.3
13.8
11.2
12.1 | 17
SU
DI | 0111
0827
1601
1914 | 1.1
4.3
2.9
3.3 | 3.6
14.1
9.5
10.8 | | SU
DI | 0103
0849
1556
1849 | 0.9
4.3
3.2
3.4 | 3.0
14.1
10.5
11.2 | 18
MO
LU | 0141
0904
1653
2024 | 1.5
4.2
2.6
3.0 | 4.9
13.8
8.5
9.8 | | 4
MO
LU | 0140
0927
1703
2003 | 1.1
4.3
2.9
3.2 | 3.6
14.1
9.5
10.5 | 19
TU
MA | 0214
0939
1742
2157 | 1.9
4.2
2.4
2.9 | 6.2
13.8
7.9
9.5 | | 5
TU
MA | 0221
1004
1759
2137 | 1.5
4.3
2.5
3.0 | 4.9
14.1
8.2
9.8 | WE
ME | 0249
1013
1827
2347 | 2.4
4.1
2.1
3.0 | 7.9
13.5
6.9
9.8 | | 6
WE
ME | 0305
1040
1849
2334 | 1.9
4.3
2.0
3.0 | 6.2
14.1
6.6
9.8 | 21
TH
JE | 0332
1044
1909 | 2.8
4.0
1.8 | 9.2
13.1
5.9 | | 7
TH
JE | 0356
1116
1936 | 2.4
4.3
1.6 | 7.9
14.1
5.2 | FR
VE | 0208
0438
1111
1948 | 3.2
3.9
1.6 | 10.5
10.5
12.8
5.2 | | FR
VE | 0116
0454
1153
2020 | 3.2
2.9
4.3
1.1 | 10.5
9.5
14.1
3.6 | SA
SA | 0333
0601
1134
2026 | 3.5
3.4
3.9
1.3 | 11.5
11.2
12.8
4.3 | | 9
SA
SA | 0236
0602
1234
2104 | 3.6
3.3
4.3
0.8 | 11.8
10.8
14.1
2.6 | SU
DI | 0403
0713
1201
2103 | 3.7
3.6
3.9
1.1 | 12.1
11.8
12.8
3.6 | | 10
SU
DI | 0338
0710
1318
2148 | 3.9
3.5
4.3
0.5 | 12.8
11.5
14.1
1.6 | MO
LU | 0424
0808
1244
2139 | 3.9
3.6
3.8
0.9 | 12.8
11.8
12.5
3.0 | | 11
MO
LU | 0429
0812
1407
2231 | 4.1
3.6
4.2
0.4 | 13.5
11.8
13.8
1.3 | 26
TU
MA | 0449
0850
1339
2214 | 4.0
3.6
3.9
0.8 | 13.1
11.8
12.8
2.6 | | 12
TU
MA | 0513
0906
1457
2312 | 4.2
3.6
4.2
0.3 | 13.8
11.8
13.8
1.0 | 27
WE
ME | 0518
0927
1433
2245 | 4.1
3.6
3.9
0.7 | 13.5
11.8
12.8
2.3 | | 13
WE
ME | 0553
1112
1548
2349 | 4.3
3.6
4.1
0.4 | 14.1
11.8
13.5
1.3 | 28
TH
JE | 0549
1004
1525
2313 | 4.1
3.5
3.9
0.6 | 13.5
11.5
12.8
2.0 | | 14
TH
JE | 0632
1210
1637 | 4.3
3.5
4.0 | 14.1
11.5
13.1 | FR
VE | 0621
1048
1616
2340 | 4.1
3.4
3.9
0.7 | 13.5
11.2
12.8
2.3 | | 15
FR
VE | 0020
0711
1415
1726 | 0.6
4.3
3.3
3.8 | 2.0
14.1
10.8
12.5 | SA
SA | 0654
1142
1707 | 4.2
3.2
3.9 | 13.8
10.5
12.8 | | | | | | 31
SU
DI | 0009
0726
1249
1801 | 0.8
4.2
3.0
3.7 | 2.6
13.8
9.8
12.1 | **Campbell River** ### January 2021 Point Atkinson | 1 0027 0.5 1.6 0808 0.7 2.3 FR 1332 3.6 11.8 NA 1430 3.1 10.2 2 0105 0.6 2.0 0841 4.8 15.7 SA 1854 3.8 12.5 2 0105 0.6 2.0 0841 4.8 15.7 SA 1829 3.9 12.8 DI 1951 3.6 11.8 3 0145 0.8 2.6 DI 1930 3.7 12.1 4 0227 1.1 3.6 0950 4.8 15.7 MO 1622 2.9 9.5 LU 2045 3.5 11.5 MA 2232 3.2 10.5 LU 2045 3.5 11.5 MA 2232 3.2 10.5 LU 2045 3.5 11.5 MA 2232 3.2 10.5 MA 2217 3.3 10.8 ME 6 0403 2.1 6.9 2.2 048 15.7 TU 1712 2.4 7.9 MA 2217 3.3 10.8 ME 6 0403 2.1 6.9 2.1 0025 3.3 10.8 ME 6 0403 2.1 6.9 ME 1816 2.0 6.6 ME 7 0007 3.4 11.2 0503 2.6 8.5 TH 1139 4.7 15.4 ME 7 0007 3.4 11.2 0503 2.6 8.5 TH 1139 4.7 15.4 ME 7 0007 3.4 11.2 0503 2.6 8.5 TH 1101 4.3 14.1 JE 1801 2.1 6.9 8 0156 3.6 11.8 0618 3.1 10.2 FR 1219 4.6 15.1 VE 1956 1.1 3.6 SA 2015 1.4 4.6 9 0321 4.0 13.1 SA 2014 4.6 15.1 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 0885 3.4 11.8 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0014 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0014 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0104 3.7 12.1 MO 1439 4.5 14.8 MO 1331 4.1 13.5 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0104 3.7 12.1 MO 1439 4.5 14.8 MO 1331 4.1 13.5 MA 2304 0.2 0.7 ME 255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 153 4.4 14.4 MA 2304 0.2 0.7 ME 255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 153 4.4 14.4 ME 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 15 0029 0.5 1.6 0757 4.9 16.1 FR 1336 3.3 10.8 VE 1803 4.0 13.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 30 0011 0.6 2.0 30 0011 0.6 2.0 30 0758 4.8 15.7 VE 1803 4.0 13.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 30 0011 0.6 2.0 30 0758 4.8 15.7 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0049 0.7 2.3 31 0059 0.7 2.3 31 | | | | | | | | | | |--|-----|--------------|------------|--------------|------|--------------|--------------|-----------------------------|--| | FR 1332 3.6 11.8 VE 1738 4.1 13.5 SA 1430 3.1 10.2 C 1738 4.1 13.5 SA 1430 3.1 10.2 C 1841 4.8 15.7 SA 1423 3.4 11.2 SA 1430 3.7 12.1 VE 1816 2.0 6.6 VE 1816 2.0 6.6 VE 1816 2.1 SA 1321 4.2 VE 1956 1.1 3.6 VE 1956 1.1 3.6 SA 1829 3.9 12.8 VE 1951 3.6 11.8 SA 1841 1.2 SA 1301 4.6 15.1 3.7 12.1 TU 1531 4.4 14.4 WE 1560 4.2 13.8 WE 1623 4.3 14.1 WE 1560 4.2 13.8 WE 1623 4.3 14.1 WE 1516 4.1 13.5 SA 1301 4.7 12.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 SA 1301 4.7 12.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 SA 1301 4.7 12.1 TU 1531 4.4 14.4 SE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 4. | Day | Time | Metres | Feet | jour | heure | mètres pieds | | | | SA 1423 3.4 11.2 SA 1829 3.9 12.8 DI 1525 2.9 9.5 SA 1829 3.9 12.8 DI 1525 2.9 9.5 DI 1930 3.7 12.1 DI 1951 3.6 11.8 O936 4.7 15.4 ST 10.2 O5.5 DI 1930 3.7 12.1 DI 1612 2.4 7.9 LU 2045 3.5 11.5 DI 205 4.8 15.7 TU 1721 2.5 8.2 MA 2217 3.3 10.8 ME 6 0403 2.1 6.9 20 0336 2.5 8.2 10.5 ME 1801 2.1 6.9 ME 1816 2.0 6.6 ME 7 0007 3.4 11.2 O5.0 6.6 ME 7 0007 3.4 11.2 O5.0 3.4 O5.2 TH 1101 4.3 14.1 JE 1907 1.5 4.9 VE 1932 1.6 5.2 PR 1219 4.6 15.1 VE 1956 1.1 3.6 SA 2015 1.4 4.6 O9.0 3.4 11.2 SA 1301 4.6 15.1 VE 1956 1.1 3.6 SA 2015 1.4 4.6 O9.0 0321 4.0 13.1 O740 3.4 11.2 SA 1301 4.6 15.1 SA 2044 0.7 2.3 DI 2056 1.1 3.6 D | FR | 0808
1332 | 4.8
3.6 | 15.7
11.8 | SA | 0832
1430 | 4.8
3.1 | 2.3
15.7
10.2
12.5 | | | SU 1521 3.2 10.5 DI 1930 3.7 12.1 4 0227 1.1 3.6 0950 4.8 15.7 MO 1622 2.9 9.5 LU 2045 3.5 11.5 5 0312 1.6 5.2 1026 4.8 15.7 TU 1721 2.5 8.2 MA 2217 3.3 10.8 6 0403 2.1 6.9 1102 4.8 15.7 WE 1816 2.0 6.6 ME 7 0007 3.4 11.2 0503 2.6 8.5 TH 1139 4.7 15.4 JE 1907 1.5 4.9 FR 1219 4.6 15.1 VE 1956 1.1 3.6 9 0321 4.0 13.1 VE 1956 1.1 3.6 9 0321 4.0 13.1 SA 2044 0.7 2.3 DI 2045 3.7 12.1 SA 1301 4.6 15.1 SA 2044 0.7 2.3 DI 2056 1.1 3.6 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2219 0.3 1.0 12 0602 4.8 15.7 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1348 4.5 14.8 4 | SA | 0841
1423 | 4.8
3.4 | 15.7
11.2 | SU | 0905
1525 | 4.8
2.9 | 3.6
15.7
9.5
11.8 | | | MO 1622 2.9 9.5 TU 1712 2.4 7.9 MA 2232 3.2 10.5 5 0312 1.6 5.2 1026 4.8 15.7 TU 1721 2.5 8.2 MA 2217 3.3 10.8 ME 6 0403 2.1 6.9 1102 4.8 15.7 WE 1816 2.0 6.6 ME 7 0007 3.4 11.2 22 0208 3.5 11.5 0533 3.4 11.2 IIII 1101 4.3 14.1 JE 1848 1.8 5.9 7 0007 3.4 11.2 22 0208 3.5 11.5 FR 1139 4.7 15.4 FR 1131 4.2 13.8 SU 1348 4.5 14.8 DI 2132 0.4 1.3 II.2 SA 1301 4.6 15.1 SA 2044 0.7 2.3 DI 2056 1.1 3.6 SA 2015 1.4 4.6 0858 3.6 11.8 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 001439 4.5 14.8 DI 2132 0.4 1.3 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 TU 1531 4.4 14.4 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 1623 4.3 11.2 TU 1531 4.4 14.4 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 1623 4.3 14.1 TU 1531 4.4 14.4 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 FR 1336 3.3 10.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 FR 1336 3.3 10.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 FR 1336 3.3 10.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 | SU | 0915
1521 | 4.8
3.2 | 15.7
10.5 | мо | 0936
1620 | 4.7
2.6 | 4.9
15.4
8.5
10.8 | | | TU 1721 2.5 8.2 WE 1801 2.1 6.9 ME 6 0403 2.1 6.9 ME 7 0007 3.4 11.2 JE 1848 1.8 5.9 7 0007 3.4 11.2 JE 1848 1.8 5.9 7 0503 2.6 8.5 TH 1101 4.3 14.1 JE 1848 1.8 5.9 8 0156 3.6 11.8 JE 1907 1.5 4.9 VE 1932 1.6 5.2 FR 1219 4.6 15.1 VE 1956 1.1 3.6 SA 2015 1.4 4.6 9 0321 4.0 13.1 SA 1205 1.4 4.6 9 0321 4.0 13.1 SA 1205 1.4 4.6 9 0321 4.0 13.1 SA 1205 1.4 4.6 10 0425 4.4 11.2 SA 1301 4.6 15.1 SU 1247 4.1 13.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 DI 2056 1.1 3.6 10 0425 4.4 14.4 DI 2056 1.1 3.6 11 0517 4.6 15.1 SU 1247 4.1 13.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 11 0517 4.6 15.1 SU 1247 4.1 13.5 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 1247 4.1 13.5 DI 2056 1.1 3.6 12 0602 4.8 15.7 JE 1004 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 TU 1425 4.1 13.5 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 JE 1004 1.3 JE 1004 1.3 JE 1103 3.7 12.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 JE 28 0634 4.6 15.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 JE 1516 4.1 13.5 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 28 0634 4.6 15.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 JE TH 1606 4.2 13.8 WE 1623 4.3 14.1 JE TH 1606 4.2 13.8 JE 2333 0.5 1.6 15 0029 0.5 1.6 0730 4.7 15.4 JE 27 0758 4.8 15.7 JE 27 0758 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 0730 4.7 15.4 JE 27 0758 4.8 15.7 JE 27 0758 4.8 15.7 JE 27 0758 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 0730 4.7 15.4 JE 27 0758 4.8 15.7 JE 27 0758 4.9 16.1 JE 2333 0.5 1.6 16 0757 4.9 16.1 SA 1304 4.1 13.5 JE 2333 0.5 1.6 17 0757 4.9 16.1 SA 1304 4.1 13.5 JE 2333 0.5 1.6 18 0049 0.7 2.3 JE 2333 0.5 1.6 19 0049 0.7 2.3 JE 2333 0.5 1.6 10 0049 0.7 2.3 JE 2333 0.5 1.6 11 0751 4.2 JE 22 0.4 JE 22 0.7 | МО | 0950
1622 | 4.8
2.9 | 15.7
9.5 | TU | 1005
1712 | 4.6
2.4 | 6.6
15.1
7.9
10.5 | | | WE 1816 2.0 6.6 ME TH 1101 4.3 14.1 JE 1848 1.8 5.9 7 0007 3.4 11.2 0503 2.6 8.5 TH 1139 4.7 15.4 JE 1907 1.5 4.9 VE 1932 1.6 5.2 8 0156 3.6 11.8 VE 1932 1.6 5.2 SA 1206 4.1 13.5 VE 1956 1.1 3.6 SA 2015 1.4 4.6 15.1 SA 2044 0.7 2.3 DI 2056 1.1 3.6 3.5 SU 1247 4.1 13.5 4.2 SU 13.8 SU 1348 4.5 6.3 SU 1344 3.4 SU 122 134 | TU | 1026
1721 | 4.8
2.5 | 15.7
8.2 | WE | 1033 | 4.4 | 8.2
14.4
6.9 | | | TH 1139 4.7 15.4 FR 1131 4.2 13.8 JE 1907 1.5 4.9 VE 1932 1.6 5.2 8 0156 3.6 11.8 VE 1932 1.6 5.2 8 0156 3.6 11.8 O618 3.1 10.2 SA 1206 4.1 13.5 VE 1956 1.1 3.6 SA 2015 1.4 4.6 9 0321 4.0 13.1 O24 O845 3.7 12.1 SA 1301 4.6 15.1 SU 1247 4.1 13.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 O858 3.6 11.8 SU 1348 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 MO 1439 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 SU 0946 3.7 12.1 | WE | 1102 | 4.8 | 15.7 | тн | 0423
1101 | 3.0
4.3 | 10.8
9.8
14.1
5.9 | | | FR 1219 4.6 15.1 SA 1206 4.1 13.5 SA 2015 1.4 4.6 9 0321 4.0 13.1 24 0415 4.1 13.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 25 0455 4.3 14.1 3.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 25 0455 4.3 14.1 3.5 SU 1348 4.5 14.8 MO 1334 4.1 13.5 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 26 0531 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 26 0531 4.5 14.8 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 1001 3.7 12.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 SWE 1516 4.1 13.5 ME 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 0757 4.2 13.8 VE 1623 4.3 14.1 JE TR 1714 4.2 13.8 FR 1657 4.2 13.8 VE 1803 4.0 13.1 SA 1749 4.1 13.5 | тн | 0503
1139 | 2.6
4.7 | 8.5
15.4 | FR | 0536
1131 | 3.4
4.2 | 11.5
11.2
13.8
5.2 | | | SA 1301 4.6 15.1 SU 1247 4.1 13.5 SA 2044 0.7 2.3 DI 2056 1.1 3.6 10 0425 4.4 14.4 25 0455 4.3 14.1 SU 1348 4.5 14.8 MO 1334 4.1 13.5 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 26 0531 4.5 14.8 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 1 26 0531 4.5 14.8 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 27 0603 4.6 15.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 ME 2255 0.6 2.0 13 0643 4.9 16.1 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 30 0011 0.6 2.0 TU 150 0.757 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 30 0011 0.6 2.0 TU 15.4 15.5 | FR | 0618
1219 | 3.1
4.6 | 10.2
15.1 | SA | 0718
1206 | 3.6
4.1 | 12.5
11.8
13.5
4.6 | | | SU 1348 4.5 14.8 MO 1334 4.1 13.5 DI 2132 0.4 1.3 LU 2137 0.9 3.0 11 0517 4.6 15.1 26 0531 4.5 14.8 1001 3.7 12.1 MO 1439 4.5 14.8 TU 1425 4.1 13.5 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 27 0603 4.6 15.1 TU 1531 4.4 14.4 WE 1516 4.1 13.5 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 1153 3.6 11.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 WE 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 JE 2333 0.5 1.6 16 0757 4.9 16.1 JE 2333 0.5 1.6 17 0757 4.9 16.1 SA 13.8 FR 1657 4.2 13.8 VE 1803 4.0 13.1 SA 1304 3.2 10.5 VE 1803 4.0 13.1 SA 1304 3.2 10.5 SA 1304 4.1 13.5 5.2 5. | SA | 0740
1301 | 3.4
4.6 | 11.2
15.1 | SU | 0845
1247 | 3.7
4.1 | 13.5
12.1
13.5
3.6 | | | 1004 3.7 12.1 MO 1439 4.5 14.8 LU 2219 0.3 1.0 MA 2216 0.8 2.6 12 0602 4.8 15.7 1108 3.6 11.8 TU 1531 4.4 14.4 WE 1516 4.1 13.5 ME 2348 0.3 1.0 ME 2255 0.6 2.0 13 0643 4.9 16.1 ME 2255 0.6 2.0 ME 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 15 0029 0.5 1.6 0757 4.9 16.1 FR 1336 3.3 10.8 VE 1803 4.0 13.1 SA 1304 3.2 10.5 VE 1803 4.0 13.1 SA 1304 3.2 10.5 SA 1304 3.2 10.5 SA 1304 3.2 10.5 SU 1351 2.9 9.5 | SU | 0858
1348 | 3.6
4.5 | 11.8
14.8 | МО | 0946
1334 | 3.7
4.1 | 14.1
12.1
13.5
3.0 | | | TU 1531 4.4 14.4 WE 1516 4.1 13.5 MA 2304 0.2 0.7 ME 2255 0.6 2.0 13 0643 4.9 16.1 28 0634 4.6 15.1 1153 3.6 11.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 ME 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 29 0702 4.7 15.4 11.2 TH 1714 4.2 13.8 FR 1657 4.2 13.8 JE 15 0029 0.5 1.6 78 1657 4.2 13.8 VE 1803 4.0 13.1 SA 1304 3.2 10.5 SA 1304 3.2 10.5 SA 1304 3.2 10.5 SA 1304 4.7 15.4 SE SU 1351 2.9 9.5 | МО | 1004
1439 | 3.7
4.5 | 12.1
14.8 | TU | 1031
1425 | 3.7
4.1 | 14.8
12.1
13.5
2.6 | | | 1153 3.6 11.8 WE 1623 4.3 14.1 TH 1606 4.2 13.8 ME 2348 0.3 1.0 JE 2333 0.5 1.6 14 0721 4.9 16.1 JE 2333 0.5 1.6 14 1244 3.4 11.2 TH 1714 4.2 13.8 FR 1657 4.2 13.8 JE 15 0029 0.5 1.6 VE 1803 4.0 13.1 SA 1304 3.2 10.5 VE 1803 4.0 13.1 SA 1749 4.1 13.5 SU 1351 2.9 9.5 | TU | 1101
1531 | 3.7
4.4 | 12.1
14.4 | WE | 1108
1516 | 3.6
4.1 | 15.1
11.8
13.5
2.0 | | | 15 0029 0.5 1.6 VE 1803 4.0 13.1 SA 1304 3.2 10.5 VE 1803 4.0 13.1 SA 1364 4.8 15.7 SU 1351 2.9 9.5 135 | WE | 1153
1623 | 3.6
4.3 | 11.8
14.1 | TH | 1144
1606 | 3.6
4.2 | 15.1
11.8
13.8
1.6 | | | FR 1336 3.3 10.8 SA 1304 3.2 10.5 VE 1803 4.0 13.1 SA 1749 4.1 13.5 SU 1351 2.9 9.5 SU 1351 2.9 9.5 | TH | 1244 | 3.4 | 11.2 | FR | 1222 | 3.4 | 15.4
11.2
13.8 | | | 0758 4.8 15.7
SU 1351 2.9 9.5 | FR | 0757
1336 | 4.9
3.3 | 16.1
10.8 | SA | 0730
1304 | 4.7
3.2 | 2.0
15.4
10.5
13.5 | | | 1 | | | | | SU | 0758
1351 | 4.8
2.9 | 2.3
15.7
9.5
13.1 | | #### **Goats in Boats:** Maya and her goats are moving to Quadra for the winter. Riding shotgun with Coady on the way to the Surge Dock. Loaded up and ready to go! Just another day in the life of a Read Island goat! #### THE NORTH ISLAND'S LARGEST MARINE STORE AND BOATYARD Discovery Harbour Shopping Centre and Marina, Campbell River, BC Tel: 250-286-1011 / Toll Free: 1-800-663-2994 / www.oceanpacificmarine.com 110-Ton Travelift **ABYC Certified Marine Technicians** **ABYC Electricians** **CWB Welders** **Qualified Fiberglass** **Cummins Marine Technicians** **Painting and Detailing** **Shipwrights & Fine Wood Workers** 2 – 40X80 Sheds, 1-60x80 Shed **Emergency Services Available** Waterproof to 15 m No subscription Link via satellite to **Emergency Services** High intensity (1 candela) strobe PLB1, the World's smallest PLB Fast accurate positioning Easily deployed antenna Homing Beacon to aid final location by Search and Rescue craft 7 year battery life 30% smaller Wherever you are, at sea, on land, the **rescueME PLB1** provides the reassurance that global emergency services can be alerted by the press of a button. rescueME PLB1 works with the only officially recognised worldwide dedicated search and rescue satellite network (operated by Cospas Sarsat). As this is funded by governments there are NO CHARGES to use this service. When activated the **rescueME** PLB1 transmits your position and your ID to a Rescue Coordination Center via satellite link. Rescue services nearest to your are promptly notified of your emergency and regularly advised of your current location to assist prompt rescue. Regular Price \$356.02 Sale Price \$324.99 In Stock Only **Kevin Bates Store Manager** Ocean Pacific Marine Store & Boatyard P: 250.286.1011 | TF: 1.800.663.2294 EXT 315 | Fax: 250.286.6254 kevinb@oceanpacificmarine.com | www.oceanpacificmarine.com Surge Currents is published as a communication tool for the local community but the content of the newsletter does not represent the opinions or position of the Surge Narrows Community Association, unless specifically stated or unless an article is signed by the Board of Directors. Back issues are available. Annual subscription to Surge Currents is free to residents/property owners and "Friends of Surge Narrows". For non-residents, the annual rate is \$10.00 for email delivery. Subscription with delivery of printed copies via Canada Post is \$25.00, or \$30.00 to a U.S.A. address Editor: ksb.svb@gmail.com SNCA Directors: Sheila Hollanders (Chairman), Rosie Steeves (Secretary), Jim Mallis (Treasurer), Steve Barnes, Dood Turner Paid up SNCA members (104) for this year October 2020 to September 2021 are: Skip Allan, Heather Ballard, Kathy & Steve Barnes, Roger Beriault, Merlin Blixhavn, Emma Chandler, Trish & Graham Cocksedge, David Cox, Madeline Cureton, Sally Davies, Pat & Derek D'Altroy, Jonathan Ellis, Ken Flager, Eve Flager, Mark, Soma & Leslie Goresky, Pamela Harbord, Mary Caroline & John Hart, Renate & Scott, Jasmine, & Dillon Harvey, Violine, Ben, Tom & Shawnai Hollanders, Dr. Steve Hughes, Cameron Humphreys, Heather & Barry Jansen, Donna & Bruce Keeling, Linda & Bruce Kempling, Renate Kviet, Claudia Lake, Marc Lavergne, Dan, Jeff & Jill Lewis, Zach Locke, Nicole Magistro, Charmaine & Jim Mallis, Matt Malnarich, Wendy & Bill Matheson, Rachel & Roger Mattice, Ann & Richard Mayer, Kathy & Dwayne McLean, Joanne McSporran, the Moss Family (13), Jeremy Paine, Johanna Paradis, Kiersten & Ashley Riley, Gloria, Dale, Amy, & Catherine Rolfsen, Suromitra Santani, Madeleine & Don Shalansky, Eileen Sowerby, Megan Steeves, Rosie & Bob Steeves, Roberta Stevenson, Josh Sutherland, Anne Tonkin, Karen & Peter Tonseth, Hazel Trego, Dood Turner, David Turpin, Caren Van Der Mark, Ginny Vassal, Shauny & Rand Volk, Sandy Welch, Maya Weichelt, Douglas White, Laurie & Rob Wood #### Thank you to our 2020-2021 members. SNCA membership is \$10.00 annually, and covers from AGM to AGM: Surge Narrows Community Association, P.O. Box 52, Surge Narrows V0P 1W0. Donations for general expenses, or as you designate for our projects, are also gratefully received at this address. Donations can also be made by email transfer to surgenarrows@gmail.com.